Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Genet Epidemiol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472646

ABSTRACT

A polygenic risk score (PRS) combines the associations of multiple genetic variants that could be due to direct causal effects, indirect genetic effects, or other sources of familial confounding. We have developed new approaches to assess evidence for and against causation by using family data for pairs of relatives (Inference about Causation from Examination of FAmiliaL CONfounding [ICE FALCON]) or measures of family history (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLyses [ICE CRISTAL]). Inference is made from the changes in regression coefficients of relatives' PRSs or PRS and family history before and after adjusting for each other. We applied these approaches to two breast cancer PRSs and multiple studies and found that (a) for breast cancer diagnosed at a young age, for example, <50 years, there was no evidence that the PRSs were causal, while (b) for breast cancer diagnosed at later ages, there was consistent evidence for causation explaining increasing amounts of the PRS-disease association. The genetic variants in the PRS might be in linkage disequilibrium with truly causal variants and not causal themselves. These PRSs cause minimal heritability of breast cancer at younger ages. There is also evidence for nongenetic factors shared by first-degree relatives that explain breast cancer familial aggregation. Familial associations are not necessarily due to genes, and genetic associations are not necessarily causal.

2.
Genet Epidemiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504141

ABSTRACT

Young breast and bowel cancers (e.g., those diagnosed before age 40 or 50 years) have far greater morbidity and mortality in terms of years of life lost, and are increasing in incidence, but have been less studied. For breast and bowel cancers, the familial relative risks, and therefore the familial variances in age-specific log(incidence), are much greater at younger ages, but little of these familial variances has been explained. Studies of families and twins can address questions not easily answered by studies of unrelated individuals alone. We describe existing and emerging family and twin data that can provide special opportunities for discovery. We present designs and statistical analyses, including novel ideas such as the VALID (Variance in Age-specific Log Incidence Decomposition) model for causes of variation in risk, the DEPTH (DEPendency of association on the number of Top Hits) and other approaches to analyse genome-wide association study data, and the within-pair, ICE FALCON (Inference about Causation from Examining FAmiliaL CONfounding) and ICE CRISTAL (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLysis) approaches to causation and familial confounding. Example applications to breast and colorectal cancer are presented. Motivated by the availability of the resources of the Breast and Colon Cancer Family Registries, we also present some ideas for future studies that could be applied to, and compared with, cancers diagnosed at older ages and address the challenges posed by young breast and bowel cancers.

3.
Cancer Epidemiol Biomarkers Prev ; 33(2): 306-313, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38059829

ABSTRACT

BACKGROUND: Cirrus is an automated risk predictor for breast cancer that comprises texture-based mammographic features and is mostly independent of mammographic density. We investigated genetic and environmental variance of variation in Cirrus. METHODS: We measured Cirrus for 3,195 breast cancer-free participants, including 527 pairs of monozygotic (MZ) twins, 271 pairs of dizygotic (DZ) twins, and 1,599 siblings of twins. Multivariate normal models were used to estimate the variance and familial correlations of age-adjusted Cirrus as a function of age. The classic twin model was expanded to allow the shared environment effects to differ by zygosity. The SNP-based heritability was estimated for a subset of 2,356 participants. RESULTS: There was no evidence that the variance or familial correlations depended on age. The familial correlations were 0.52 (SE, 0.03) for MZ pairs and 0.16(SE, 0.03) for DZ and non-twin sister pairs combined. Shared environmental factors specific to MZ pairs accounted for 20% of the variance. Additive genetic factors accounted for 32% (SE = 5%) of the variance, consistent with the SNP-based heritability of 36% (SE = 16%). CONCLUSION: Cirrus is substantially familial due to genetic factors and an influence of shared environmental factors that was evident for MZ twin pairs only. The latter could be due to nongenetic factors operating in utero or in early life that are shared by MZ twins. IMPACT: Early-life factors, shared more by MZ pairs than DZ/non-twin sister pairs, could play a role in the variation in Cirrus, consistent with early life being recognized as a critical window of vulnerability to breast carcinogens.


Subject(s)
Breast Neoplasms , Female , Humans , Breast , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Mammography , Risk Factors , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics
4.
Breast Cancer Res ; 25(1): 127, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880807

ABSTRACT

BACKGROUND: Mammogram risk scores based on texture and density defined by different brightness thresholds are associated with breast cancer risk differently and could reveal distinct information about breast cancer risk. We aimed to investigate causal relationships between these intercorrelated mammogram risk scores to determine their relevance to breast cancer aetiology. METHODS: We used digitised mammograms for 371 monozygotic twin pairs, aged 40-70 years without a prior diagnosis of breast cancer at the time of mammography, from the Australian Mammographic Density Twins and Sisters Study. We generated normalised, age-adjusted, and standardised risk scores based on textures using the Cirrus algorithm and on three spatially independent dense areas defined by increasing brightness threshold: light areas, bright areas, and brightest areas. Causal inference was made using the Inference about Causation from Examination of FAmilial CONfounding (ICE FALCON) method. RESULTS: The mammogram risk scores were correlated within twin pairs and with each other (r = 0.22-0.81; all P < 0.005). We estimated that 28-92% of the associations between the risk scores could be attributed to causal relationships between the scores, with the rest attributed to familial confounders shared by the scores. There was consistent evidence for positive causal effects: of Cirrus, light areas, and bright areas on the brightest areas (accounting for 34%, 55%, and 85% of the associations, respectively); and of light areas and bright areas on Cirrus (accounting for 37% and 28%, respectively). CONCLUSIONS: In a mammogram, the lighter (less dense) areas have a causal effect on the brightest (highly dense) areas, including through a causal pathway via textural features. These causal relationships help us gain insight into the relative aetiological importance of different mammographic features in breast cancer. For example our findings are consistent with the brightest areas being more aetiologically important than lighter areas for screen-detected breast cancer; conversely, light areas being more aetiologically important for interval breast cancer. Additionally, specific textural features capture aetiologically independent breast cancer risk information from dense areas. These findings highlight the utility of ICE FALCON and family data in decomposing the associations between intercorrelated disease biomarkers into distinct biological pathways.


Subject(s)
Breast Neoplasms , Female , Humans , Australia/epidemiology , Breast/diagnostic imaging , Breast Density , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Mammography/methods , Risk Factors , Adult , Middle Aged , Aged
5.
Int J Epidemiol ; 52(5): 1557-1568, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37349888

ABSTRACT

BACKGROUND: The extent to which known and unknown factors explain how much people of the same age differ in disease risk is fundamental to epidemiology. Risk factors can be correlated in relatives, so familial aspects of risk (genetic and non-genetic) must be considered. DEVELOPMENT: We present a unifying model (VALID) for variance in risk, with risk defined as log(incidence) or logit(cumulative incidence). Consider a normally distributed risk score with incidence increasing exponentially as the risk increases. VALID's building block is variance in risk, Δ2, where Δ = log(OPERA) is the difference in mean between cases and controls and OPERA is the odds ratio per standard deviation. A risk score correlated r between a pair of relatives generates a familial odds ratio of exp(rΔ2). Familial risk ratios, therefore, can be converted into variance components of risk, extending Fisher's classic decomposition of familial variation to binary traits. Under VALID, there is a natural upper limit to variance in risk caused by genetic factors, determined by the familial odds ratio for genetically identical twin pairs, but not to variation caused by non-genetic factors. APPLICATION: For female breast cancer, VALID quantified how much variance in risk is explained-at different ages-by known and unknown major genes and polygenes, non-genomic risk factors correlated in relatives, and known individual-specific factors. CONCLUSION: VALID has shown that, while substantial genetic risk factors have been discovered, much is unknown about genetic and familial aspects of breast cancer risk especially for young women, and little is known about individual-specific variance in risk.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Female , Humans , Age Factors , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Incidence , Risk Factors
6.
Prostate ; 83(10): 962-969, 2023 07.
Article in English | MEDLINE | ID: mdl-37062910

ABSTRACT

BACKGROUND: Accurate prostate cancer risk assessment will enable identification of men who are at increased risk of the disease. Using the UK Biobank population-based cohort, we developed and validated a simple model comprising age, family history, and a polygenic risk score (PRS) to predict 5-year risk of prostate cancer. METHODS: Eligible participants were unaffected Caucasian men aged 40-69 years at their baseline assessment who had genotyping data available and had completed 6 or more weeks of follow-up. Family history was the number of affected first-degree relatives: 0, 1, or 2+. We used 264 single-nucleotide polymorphisms (SNPs) of a previously developed 269-SNP PRS and population standardized the PRS to have a mean of 1. Age was categorized into 10-year groups: 40-49, 50-59, and 60-69. In a 70% training data set, we used Cox regression with age as the time axis to model family history, PRS, and age group. The model estimates were used with prostate cancer incidences to derive 5-year risks of prostate cancer. Using 5 years of follow-up in a 30% testing data set, the model was tested in terms of its association per quintile of risk, discrimination, and calibration. RESULTS: Of the 198 334 eligible participants, 8996 (4.5%) were diagnosed with incident prostate cancer during follow-up and had a mean age of 67.9 (SD = 5.8) years at diagnosis. The best-fitting model included the PRS, family history, 10-year age group, interactions between age and PRS, and age and family history. In the 30% testing data set with follow-up limited to 5 years, the hazard ratio per SD of 5-year risk was 3.058 (95% confidence interval [CI], 2.720-3.438) and the Harrell's C-index was 0.811 (95% CI, 0.800-0.821). Overall, there were 1088 observed and 1159.1 expected prostate cancers, a standardized incidence ratio of 0.939 (95% CI, 0.885-0.996). CONCLUSIONS: Men at increased risk of prostate cancer could benefit from informed discussions around the risks and benefits of available options for screening for prostate cancer. Although the model was developed in Caucasian men, it can be used with ethnicity-specific polygenic risk and incidence rates for other populations.


Subject(s)
Prostatic Neoplasms , Male , Humans , Aged , Child , Risk Assessment , Risk Factors , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Proportional Hazards Models , Incidence , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
7.
Melanoma Res ; 33(4): 293-299, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37096571

ABSTRACT

Melanoma is one of the most commonly diagnosed cancers in the Western world: third in Australia, fifth in the USA and sixth in the European Union. Predicting an individual's personal risk of developing melanoma may aid them in undertaking effective risk reduction measures. The objective of this study was to use the UK Biobank to predict the 10-year risk of melanoma using a newly developed polygenic risk score (PRS) and an existing clinical risk model. We developed the PRS using a matched case-control training dataset ( N  = 16 434) in which age and sex were controlled by design. The combined risk score was developed using a cohort development dataset ( N  = 54 799) and its performance was tested using a cohort testing dataset ( N  = 54 798). Our PRS comprises 68 single-nucleotide polymorphisms and had an area under the receiver operating characteristic curve of 0.639 [95% confidence interval (CI) = 0.618-0.661]. In the cohort testing data, the hazard ratio per SD of the combined risk score was 1.332 (95% CI = 1.263-1.406). Harrell's C-index was 0.685 (95% CI = 0.654-0.715). Overall, the standardized incidence ratio was 1.193 (95% CI = 1.067-1.335). By combining a PRS and a clinical risk score, we have developed a risk prediction model that performs well in terms of discrimination and calibration. At an individual level, information on the 10-year risk of melanoma can motivate people to take risk-reduction action. At the population level, risk stratification can allow more effective population-level screening strategies to be implemented.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/epidemiology , Risk Assessment , Skin Neoplasms/genetics , Skin Neoplasms/epidemiology , Risk Factors , Incidence , Genetic Predisposition to Disease , Genome-Wide Association Study
8.
Cancer Prev Res (Phila) ; 16(5): 281-291, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36862830

ABSTRACT

PREVENTION RELEVANCE: In this prospective population-based cohort study, we show the improved performance of a new risk assessment model compared with a gold-standard model (BCRAT). The classification of at-risk women using this new model highlights the opportunity to improve risk stratification and implement existing clinical risk-reduction interventions.


Subject(s)
Breast Neoplasms , Humans , Female , Cohort Studies , Prospective Studies , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/prevention & control , Risk Assessment , Risk Factors
9.
Breast Cancer Res Treat ; 198(2): 335-347, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36749458

ABSTRACT

PURPOSE: We compared a simple breast cancer risk prediction model, BRISK (which includes mammographic density, polygenic risk and clinical factors), against a similar model with more risk factors (simplified Rosner) and against two commonly used clinical models (Gail and IBIS). METHODS: Using nested case-control data from the Nurses' Health Study, we compared the models' association, discrimination and calibration. Classification performance was compared between Gail and BRISK for 5-year risks and between IBIS and BRISK for remaining lifetime risk. RESULTS: The odds ratio per standard deviation was 1.43 (95% CI 1.32, 1.55) for BRISK 5-year risk, 1.07 (95% CI 0.99, 1.14) for Gail 5-year risk, 1.72 (95% CI 1.59, 1.87) for simplified Rosner 10-year risk, 1.51 (95% CI 1.41, 1.62) for BRISK remaining lifetime risk and 1.26 (95% CI 1.16, 1.36) for IBIS remaining lifetime risk. The area under the receiver operating characteristic curve (AUC) was improved for BRISK over Gail for 5-year risk (AUC = 0.636 versus 0.511, P < 0.0001) and for BRISK over IBIS for remaining lifetime risk (AUC = 0.647 versus 0.571, P < 0.0001). BRISK was well calibrated for the estimation of both 5-year risk (expected/observed [E/O] = 1.03; 95% CI 0.73, 1.46) and remaining lifetime risk (E/O = 1.01; 95% CI 0.86, 1.17). The Gail 5-year risk (E/O = 0.85; 95% CI 0.58, 1.24) and IBIS remaining lifetime risk (E/O = 0.73; 95% CI 0.60, 0.87) were not well calibrated, with both under-estimating risk. BRISK improves classification of risk compared to Gail 5-year risk (NRI = 0.31; standard error [SE] = 0.031) and IBIS remaining lifetime risk (NRI = 0.287; SE = 0.035). CONCLUSION: BRISK performs better than two commonly used clinical risk models and no worse compared to a similar model with more risk factors.


Subject(s)
Breast Density , Breast Neoplasms , Humans , Female , Risk Assessment , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Risk Factors , ROC Curve , Models, Statistical
10.
Eur J Cancer Prev ; 32(1): 57-64, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36503897

ABSTRACT

OBJECTIVE: Women with a family history of ovarian cancer or a pathogenic or likely pathogenic gene variant are at high risk of the disease, but very few women have these risk factors. We assessed whether a combined polygenic and clinical risk score could predict risk of ovarian cancer in population-based women who would otherwise be considered as being at average risk. METHODS: We used the UK Biobank to conduct a prospective cohort study assessing the performance of 10-year ovarian cancer risks based on a polygenic risk score, a clinical risk score and a combined risk score. We used Cox regression to assess association, Harrell's C-index to assess discrimination and Poisson regression to assess calibration. RESULTS: The combined risk model performed best and problems with calibration were overcome by recalibrating the model, which then had a hazard ratio per quintile of risk of 1.338 [95% confidence interval (CI), 1.152-1.553], a Harrell's C-index of 0.663 (95% CI, 0.629-0.698) and overall calibration of 1.000 (95% CI, 0.874-1.145). In the refined model with estimates based on the entire dataset, women in the top quintile of 10-year risk were at 1.387 (95% CI, 1.086-1.688) times increased risk, while women in the top quintile of full-lifetime risk were at 1.527 (95% CI, 1.187-1.866) times increased risk compared with the population. CONCLUSION: Identification of women who are at high risk of ovarian cancer can allow healthcare providers and patients to engage in joint decision-making discussions around the risks and benefits of screening options or risk-reducing surgery.


Subject(s)
Models, Genetic , Ovarian Neoplasms , Humans , Female , Prospective Studies , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Health Personnel
11.
PLoS One ; 17(12): e0278764, 2022.
Article in English | MEDLINE | ID: mdl-36459520

ABSTRACT

Polygenic risk scores (PRSs) are a promising approach to accurately predict an individual's risk of developing disease. The area under the receiver operating characteristic curve (AUC) of PRSs in their population are often only reported for models that are adjusted for age and sex, which are known risk factors for the disease of interest and confound the association between the PRS and the disease. This makes comparison of PRS between studies difficult because the genetic effects cannot be disentangled from effects of age and sex (which have a high AUC without the PRS). In this study, we used data from the UK Biobank and applied the stacked clumping and thresholding method and a variation called maximum clumping and thresholding method to develop PRSs to predict coronary artery disease, hypertension, atrial fibrillation, stroke and type 2 diabetes. We created case-control training datasets in which age and sex were controlled by design. We also excluded prevalent cases to prevent biased estimation of disease risks. The maximum clumping and thresholding PRSs required many fewer single-nucleotide polymorphisms to achieve almost the same discriminatory ability as the stacked clumping and thresholding PRSs. Using the testing datasets, the AUCs for the maximum clumping and thresholding PRSs were 0.599 (95% confidence interval [CI]: 0.585, 0.613) for atrial fibrillation, 0.572 (95% CI: 0.560, 0.584) for coronary artery disease, 0.585 (95% CI: 0.564, 0.605) for type 2 diabetes, 0.559 (95% CI: 0.550, 0.569) for hypertension and 0.514 (95% CI: 0.494, 0.535) for stroke. By developing a PRS using a dataset in which age and sex are controlled by design, we have obtained true estimates of the discriminatory ability of the PRSs alone rather than estimates that include the effects of age and sex.


Subject(s)
Atrial Fibrillation , Cardiovascular Diseases , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Hypertension , Stroke , Humans , Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Coronary Artery Disease/genetics , Hypertension/genetics , Risk Factors
12.
Am J Hum Genet ; 109(10): 1777-1788, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36206742

ABSTRACT

Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Adult , Aged, 80 and over , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Case-Control Studies , Female , Humans , Multifactorial Inheritance/genetics , Penetrance , Young Adult
13.
Cancers (Basel) ; 14(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35681745

ABSTRACT

Cumulus, Altocumulus, and Cirrocumulus are measures of mammographic density defined at increasing pixel brightness thresholds, which, when converted to mammogram risk scores (MRSs), predict breast cancer risk. Twin and family studies suggest substantial variance in the MRSs could be explained by genetic factors. For 2559 women aged 30 to 80 years (mean 54 years), we measured the MRSs from digitized film mammograms and estimated the associations of the MRSs with a 313-SNP breast cancer polygenic risk score (PRS) and 202 individual SNPs associated with breast cancer risk. The PRS was weakly positively correlated (correlation coefficients ranged 0.05−0.08; all p < 0.04) with all the MRSs except the Cumulus-white MRS based on the "white but not bright area" (correlation coefficient = 0.04; p = 0.06). After adjusting for its association with the Altocumulus MRS, the PRS was not associated with the Cumulus MRS. There were MRS associations (Bonferroni-adjusted p < 0.04) with one SNP in the ATXN1 gene and nominally with some ESR1 SNPs. Less than 1% of the variance of the MRSs is explained by the genetic markers currently known to be associated with breast cancer risk. Discovering the genetic determinants of the bright, not white, regions of the mammogram could reveal substantial new genetic causes of breast cancer.

15.
Cancers (Basel) ; 14(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35326633

ABSTRACT

Cumulus, Cumulus-percent, Altocumulus, Cirrocumulus, and Cumulus-white are mammogram risk scores (MRSs) for breast cancer based on mammographic density defined in effect by different levels of pixel brightness and adjusted for age and body mass index. We measured these MRS from digitized film mammograms for 593 monozygotic (MZ) and 326 dizygotic (DZ) female twin pairs and 1592 of their sisters. We estimated the correlations in relatives (r) and the proportion of variance due to genetic factors (heritability) using the software FISHER and predicted the familial risk ratio (FRR) associated with each MRS. The ρ estimates ranged from: 0.41 to 0.60 (standard error [SE] 0.02) for MZ pairs, 0.16 to 0.26 (SE 0.05) for DZ pairs, and 0.19 to 0.29 (SE 0.02) for sister pairs (including pairs of a twin and her non-twin sister), respectively. Heritability estimates were 39% to 69% under the classic twin model and 36% to 56% when allowing for shared non-genetic factors specific to MZ pairs. The FRRs were 1.08 to 1.17. These MRSs are substantially familial, due mostly to genetic factors that explain one-quarter to one-half as much of the familial aggregation of breast cancer that is explained by the current best polygenic risk score.

16.
EBioMedicine ; 77: 103927, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35301182

ABSTRACT

BACKGROUND: Previous findings for the genetic and environmental contributions to DNA methylation variation were for limited age ranges only. We investigated the lifespan contributions and their implications for human health for the first time. METHODS: 1,720 monozygotic twin (MZ) pairs and 1,107 dizygotic twin (DZ) pairs aged 0-92 years were included. Familial correlations (i.e., correlations between twins) for 353,681 methylation sites were estimated and modelled as a function of twin pair cohabitation history. FINDINGS: The methylome average familial correlation was around zero at birth (MZ pair: -0.01; DZ pair: -0.04), increased with the time of twins living together during childhood at rates of 0.16 (95%CI: 0.12-0.20) for MZ pairs and 0.13 (95%CI: 0.07-0.20) for DZ pairs per decade, and decreased with the time of living apart during adulthood at rates of 0.026 (95%CI: 0.019-0.033) for MZ pairs and 0.027 (95%CI: 0.011-0.043) for DZ pairs per decade. Neither the increasing nor decreasing rate differed by zygosity (both P>0.1), consistent with cohabitation environment shared by twins, rather than genetic factors, influencing the methylation familial correlation changes. Familial correlations for 6.6% (23,386/353,681) sites changed with twin pair cohabitation history. These sites were enriched for high heritability, proximal promoters, and epigenetic/genetic associations with various early-life factors and late-life health conditions. INTERPRETATION: Early life strongly influences DNA methylation variation across the lifespan, and the effects are stronger for heritable sites and sites biologically relevant to the regulation of gene expression. Early life could affect late-life health through influencing DNA methylation. FUNDING: Victorian Cancer Agency, Cancer Australia, Cure Cancer Foundation.


Subject(s)
DNA Methylation , Longevity , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Epigenomics , Humans , Infant , Infant, Newborn , Longevity/genetics , Middle Aged , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Young Adult
17.
Int J Epidemiol ; 51(5): 1502-1510, 2022 10 13.
Article in English | MEDLINE | ID: mdl-34849953

ABSTRACT

BACKGROUND: In infancy, males are at higher risk of dying than females. Birthweight and gestational age are potential confounders or mediators but are also familial and correlated, posing epidemiological challenges that can be addressed by studying male-female twin pairs. METHODS: We studied 28 558 male-female twin pairs born in Brazil between 2012 and 2016, by linking their birth and death records. Using a co-twin control study matched for gestational age and familial factors, we applied logistic regression with random effects (to account for paired data) to study the association between male sex and infant death, adjusting for: birthweight, within- and between-pair effects of birthweight, birth order and gestational age, including interactions. The main outcome was infant mortality (0-365 days) stratified by neonatal (early and late) and postneonatal deaths. RESULTS: Males were 100 g heavier and more at risk of infant death than their female co-twins before [odds ratio (OR) = 1.28, 95% confidence interval (CI): 1.11-1.49, P = 0.001] and after (OR = 1.60, 95% CI: 1.39-1.83, P <0.001) adjusting for birthweight and birth order. When adjusting for birthweight within-pair difference and mean separately, the OR attenuated to 1.40 (95% CI: 1.21-1.61, P <0.001), with evidence of familial confounding (likelihood ratio test, P <0.001). We found evidence of interaction (P = 0.001) between male sex and gestational age for early neonatal death. CONCLUSIONS: After matching for gestational age and familial factors by design and controlling for birthweight and birth order, males remain at greater risk of infant death than their female co-twins. Birthweight's role as a confounder can be partially explained by familial factors.


Subject(s)
Infant Mortality , Sex Characteristics , Birth Weight , Brazil/epidemiology , Female , Gestational Age , Humans , Infant , Infant Death , Infant, Newborn , Information Storage and Retrieval , Male , Risk Factors
18.
Cancer Prev Res (Phila) ; 15(3): 185-191, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34965921

ABSTRACT

We considered whether weight is more informative than body mass index (BMI) = weight/height2 when predicting breast cancer risk for postmenopausal women, and if the weight association differs by underlying familial risk. We studied 6,761 women postmenopausal at baseline with a wide range of familial risk from 2,364 families in the Prospective Family Study Cohort. Participants were followed for on average 11.45 years and there were 416 incident breast cancers. We used Cox regression to estimate risk associations with log-transformed weight and BMI after adjusting for underlying familial risk. We compared model fits using the Akaike information criterion (AIC) and nested models using the likelihood ratio test. The AIC for the weight-only model was 6.22 units lower than for the BMI-only model, and the log risk gradient was 23% greater. Adding BMI or height to weight did not improve fit (ΔAIC = 0.90 and 0.83, respectively; both P = 0.3). Conversely, adding weight to BMI or height gave better fits (ΔAIC = 5.32 and 11.64; P = 0.007 and 0.0002, respectively). Adding height improved only the BMI model (ΔAIC = 5.47; P = 0.006). There was no evidence that the BMI or weight associations differed by underlying familial risk (P > 0.2). Weight is more informative than BMI for predicting breast cancer risk, consistent with nonadipose as well as adipose tissue being etiologically relevant. The independent but multiplicative associations of weight and familial risk suggest that, in terms of absolute breast cancer risk, the association with weight is more important the greater a woman's underlying familial risk. PREVENTION RELEVANCE: Our results suggest that the relationship between BMI and breast cancer could be due to a relationship between weight and breast cancer, downgraded by inappropriately adjusting for height; potential importance of anthropometric measures other than total body fat; breast cancer risk associations with BMI and weight are across a continuum.


Subject(s)
Breast Neoplasms , Body Mass Index , Body Weight , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Female , Humans , Postmenopause , Prospective Studies , Risk Factors
19.
JNCI Cancer Spectr ; 5(6)2021 12.
Article in English | MEDLINE | ID: mdl-34950851

ABSTRACT

Background: Recreational physical activity (RPA) is associated with improved survival after breast cancer (BC) in average-risk women, but evidence is limited for women who are at increased familial risk because of a BC family history or BRCA1 and BRCA2 pathogenic variants (BRCA1/2 PVs). Methods: We estimated associations of RPA (self-reported average hours per week within 3 years of BC diagnosis) with all-cause mortality and second BC events (recurrence or new primary) after first invasive BC in women in the Prospective Family Study Cohort (n = 4610, diagnosed 1993-2011, aged 22-79 years at diagnosis). We fitted Cox proportional hazards regression models adjusted for age at diagnosis, demographics, and lifestyle factors. We tested for multiplicative interactions (Wald test statistic for cross-product terms) and additive interactions (relative excess risk due to interaction) by age at diagnosis, body mass index, estrogen receptor status, stage at diagnosis, BRCA1/2 PVs, and familial risk score estimated from multigenerational pedigree data. Statistical tests were 2-sided. Results: We observed 1212 deaths and 473 second BC events over a median follow-up from study enrollment of 11.0 and 10.5 years, respectively. After adjusting for covariates, RPA (any vs none) was associated with lower all-cause mortality of 16.1% (95% confidence interval [CI] = 2.4% to 27.9%) overall, 11.8% (95% CI = -3.6% to 24.9%) in women without BRCA1/2 PVs, and 47.5% (95% CI = 17.4% to 66.6%) in women with BRCA1/2 PVs (RPA*BRCA1/2 multiplicative interaction P = .005; relative excess risk due to interaction = 0.87, 95% CI = 0.01 to 1.74). RPA was not associated with risk of second BC events. Conclusion: Findings support that RPA is associated with lower all-cause mortality in women with BC, particularly in women with BRCA1/2 PVs.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Exercise , Genetic Predisposition to Disease , Recreation Therapy , Adult , Age Factors , Aged , Cause of Death , Exercise/statistics & numerical data , Female , Follow-Up Studies , Genes, BRCA1 , Genes, BRCA2 , Humans , Middle Aged , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/genetics , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/genetics , Proportional Hazards Models , Recreation Therapy/statistics & numerical data , Time Factors , Young Adult
20.
PLoS One ; 16(9): e0251469, 2021.
Article in English | MEDLINE | ID: mdl-34525106

ABSTRACT

Colorectal cancer risk stratification is crucial to improve screening and risk-reducing recommendations, and consequently do better than a one-size-fits-all screening regimen. Current screening guidelines in the UK, USA and Australia focus solely on family history and age for risk prediction, even though the vast majority of the population do not have any family history. We investigated adding a polygenic risk score based on 45 single-nucleotide polymorphisms to a family history model (combined model) to quantify how it improves the stratification and discriminatory performance of 10-year risk and full lifetime risk using a prospective population-based cohort within the UK Biobank. For both 10-year and full lifetime risk, the combined model had a wider risk distribution compared with family history alone, resulting in improved risk stratification of nearly 2-fold between the top and bottom risk quintiles of the full lifetime risk model. Importantly, the combined model can identify people (n = 72,019) who do not have family history of colorectal cancer but have a predicted risk that is equivalent to having at least one affected first-degree relative (n = 44,950). We also confirmed previous findings by showing that the combined full lifetime risk model significantly improves discriminatory accuracy compared with a simple family history model 0.673 (95% CI 0.664-0.682) versus 0.666 (95% CI 0.657-0.675), p = 0.0065. Therefore, a combined polygenic risk score and first-degree family history model could be used to improve risk stratified population screening programs.


Subject(s)
Colorectal Neoplasms/genetics , Early Detection of Cancer/methods , Polymorphism, Single Nucleotide , Adult , Aged , Biological Specimen Banks , Cohort Studies , Female , Genetic Predisposition to Disease , Humans , Male , Medical History Taking , Middle Aged , Multifactorial Inheritance , Prospective Studies , Risk Factors , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...